Article ID Journal Published Year Pages File Type
1119188 Procedia - Social and Behavioral Sciences 2013 25 Pages PDF
Abstract

The aim of this paper is to develop a path-size weibit (PSW) route choice model with an equivalent mathematical programming (MP) formulation under the stochastic user equilibrium (SUE) principle that can account for both route overlapping and route-specific perception variance problems. Specifically, the Weibull distributed random error term handles the identically distributed assumption such that the perception variance with respect to different trip lengths can be distinguished, and a path-size factor term is introduced to resolve the route overlapping issue by adjusting the choice probabilities for routes with strong couplings with other routes. A multiplicative Beckmann's transformation (MBec) combined with an entropy term are used to develop the MP formulation for the PSW-SUE model. A path-based algorithm based on the partial linearization method is adopted for solving the PSW-SUE model. Numerical examples are also provided to illustrate features of the PSW-SUE model and its differences compared to some existing SUE model as well as its applicability on a real-size network.

Related Topics
Social Sciences and Humanities Arts and Humanities Arts and Humanities (General)