Article ID Journal Published Year Pages File Type
11262885 Journal of Natural Gas Science and Engineering 2018 14 Pages PDF
Abstract
To determine the pore structure characteristics and its effect on the adsorption capacity of semi-anthracite, high pressure mercury injection (HPMI), Low pressure nitrogen gas adsorption (LP-N2GA), Low pressure carbon dioxide gas adsorption (LP-CO2GA) and isotherm adsorption experiments were carried out on eight coal samples collected from the Shizhuangnan Block. The results show that the semi-anthracite reservoirs predominantly developed semi-open pores with poor connectivity and various pore morphology. The combined pore size distribution (PSD) from results of HPMI, LP-N2GA and LP-CO2GA indicated that the super-micropores in semi-anthracite reservoirs are most developed, providing the main storage space, accounting for 80.75% of the total TPV and 99.69% of the total SSA, followed by macropores. Additionally, the pore volume and SSA distributions of semi-anthracite reservoirs are unimodal with peak values present at 0.5-0.6 nm, indicating that pores with pore diameter between 0.5 and 0.6 nm are the largest contributors to TPV and SSA, accounting for 40.09% of the TPV and 56.95% of the total SSA. The super-micropores have a controlling factor on the adsorption capacity of semi-anthracite reservoirs. Vitrinite-rich coals developed stronger adsorption capacity as the vitrinite is rich in super-micropores whereas there are no obvious correlations between inertinite content with super-micropore SSA and VL. Additionally, mineral has a negative effect on the adsorption capacity of coals by inhibiting the development level of super-micropores. The combination application of HPMI, LP-N2GA and LP-CO2GA can more accurately reflect the pore structure of coal reservoir, especially for super-micropores.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, ,