Article ID Journal Published Year Pages File Type
11263923 Current Opinion in Neurobiology 2019 6 Pages PDF
Abstract
Understanding of how intracellular calcium (Ca2+) signals regulate the efficacy of transmission at excitatory and inhibitory synapses in the central nervous system (CNS) has been a focus of intense investigation. This review discusses recent findings on how Ca2+ signals are integrated in dendrites of inhibitory interneurons to regulate their synapses. In particular, Ca2+ signaling through intracellular Ca2+ release plays an essential role in synaptic signal transduction and experience-dependent plasticity in dendrites of interneurons. Understanding the alternative pathways of Ca2+ signaling in the absence of canonical voltage-gated Ca2+ mechanisms is beginning to shed light on how their regulation can contribute to interneuron function and dysfunction in disease.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,