Article ID Journal Published Year Pages File Type
1129469 Social Networks 2007 19 Pages PDF
Abstract

This paper describes an empirical comparison of four specifications of the exponential family of random graph models (ERGM), distinguished by model specification (dyadic independence, Markov, partial conditional dependence) and, for the Markov model, by estimation method (Maximum Pseudolikelihood, Maximum Likelihood). This was done by reanalyzing 102 student networks in 57 junior high school classes. At the level of all classes combined, earlier substantive conclusions were supported by all specifications. However, the different specifications led to different conclusions for individual classes. PL produced unreliable estimates (when ML is regarded as the standard) and had more convergence problems than ML. Furthermore, the estimates of covariate effects were affected considerably by controlling for network structure, although the precise specification of the structural part (Markov or partial conditional dependence) mattered less.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,