Article ID Journal Published Year Pages File Type
1134676 Computers & Industrial Engineering 2008 13 Pages PDF
Abstract

Genetic algorithm is a novel optimization technique for solving constrained optimization problems. The penalty function methods are the popular approaches because of their simplicity and ease of implementation. Penalty encoding method needs more generations to get good solutions because it causes invalid chromosomes during evolution. In order to advance the performance of Genetic Algorithms for solving production allocation problems, this paper proposes a new encoding method, which applies the upper/lower bound concept of dynamic programming decision path on the chromosome encoding of genetic algorithm, that encodes constraints into chromosome to ensure that chromosomes are all valid during the process of evolution. Utilization of the implicated parallel processing characteristic of genetic algorithms to improve dynamic programming cannot guarantee to solve complex problems in the polynomial time. Additionally, a new simultaneous crossover and mutation operation is proposed to enable the new method to run correctly following the standard genetic algorithm procedures. This approach is evaluated on some test problems. Solutions obtained by this approach indicate that our new encoding genetic algorithms certainly accelerate the performance of the evolution process.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,