Article ID Journal Published Year Pages File Type
1135484 Computers & Industrial Engineering 2009 10 Pages PDF
Abstract

Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain preferable results in solving the mono-objective FJSP. However, they are very difficult to solve multi-objective FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which integrates local search and global search scheme possesses high search efficiency. And, TS is a meta-heuristic which is designed for finding a near optimal solution of combinatorial optimization problems. Through reasonably hybridizing the two optimization algorithms, an effective hybrid approach for the multi-objective FJSP has been proposed. The computational results have proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, especially for the problems on a large scale.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,