Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1135642 | Computers & Industrial Engineering | 2008 | 13 Pages |
Abstract
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on m machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard's well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling problems.
Related Topics
Physical Sciences and Engineering
Engineering
Industrial and Manufacturing Engineering
Authors
Marcelo Seido Nagano, Rubén Ruiz, Luiz Antonio Nogueira Lorena,