Article ID Journal Published Year Pages File Type
1135906 Computers & Industrial Engineering 2010 12 Pages PDF
Abstract

This study aims to develop an intelligent algorithm by integrating the independent component analysis (ICA) and support vector machine (SVM) for monitoring multivariate processes. For developing a successful SVM-based fault detector, the first step is feature extraction. In real industrial processes, process variables are rarely Gaussian distributed. Thus, this study proposes the application of ICA to extract the hidden information of a non-Gaussian process before conducting SVM. The proposed fault detector will be implemented via two simulated processes and a case study of the Tennessee Eastman process. Results demonstrate that the proposed method possesses superior fault detection when compared to conventional monitoring methods, including PCA, ICA, modified ICA, ICA–PCA and PCA–SVM.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,