Article ID Journal Published Year Pages File Type
1139190 Mathematics and Computers in Simulation 2016 20 Pages PDF
Abstract

We describe Monte Carlo algorithms to solve elliptic partial differential equations with piecewise constant diffusion coefficients and general boundary conditions including Robin and transmission conditions as well as a damping term. The treatment of the boundary conditions is done via stochastic finite differences techniques which possess a higher order than the usual methods. The simulation of Brownian paths inside the domain relies on variations around the walk on spheres method with or without killing. We check numerically the efficiency of our algorithms on various examples of diffusion equations illustrating each of the new techniques introduced here.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,