Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1139222 | Mathematics and Computers in Simulation | 2013 | 19 Pages |
Proper orthogonal decomposition (POD) method has been successfully used in the reduced-order modeling of complex systems. In this paper, we extend the applications of POD method, i.e., combine the classical finite volume element (FVE) method with the POD method to obtain a reduced-order FVE formulation with lower dimensions and sufficiently high accuracy for two-dimensional solute transport problems, which have real life practical applications. We then provide error estimates between the reduced-order POD FVE solutions and classical FVE solutions and we provide implementation of an extrapolation algorithm for solving the reduced-order FVE formulation. Thus, we provide the theoretical basis for practical applications. A numerical example is then used to ascertain that the results of numerical computation are consistent with the theoretical derivations. Moreover, it is shown that the reduced-order FVE formulation based on POD method is both feasible and efficient for solving two-dimensional solute transport problems.