Article ID Journal Published Year Pages File Type
1139753 Mathematics and Computers in Simulation 2012 16 Pages PDF
Abstract
The paper presents an interpolation scheme for G1 Hermite motion data, i.e., interpolation of data points and rotations at the points, with spatial quintic Pythagorean-hodograph curves so that the Euler-Rodrigues frame of the curve coincides with the rotations at the points. The interpolant is expressed in a closed form with three free parameters, which are computed based on minimizing the rotations of the normal plane vectors around the tangent and on controlling the length of the curve. The proposed choice of parameters is supported with the asymptotic analysis. The approximation error is of order four and the Euler-Rodrigues frame differs from the ideal rotation minimizing frame with the order three. The scheme is used for rigid body motions and swept surface construction.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,