Article ID Journal Published Year Pages File Type
1140147 Mathematics and Computers in Simulation 2010 15 Pages PDF
Abstract

In this paper, we consider the time fractional inverse advection–dispersion problem (TFIADP) in a quarter plane. The solute concentration and dispersion flux are sought from a measured concentration history at a fixed location inside the body. Such problem is obtained from the classical advection–dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α(0 < α < 1). We show that the TFIADP is severely ill-posed and further apply a spectral regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,