Article ID Journal Published Year Pages File Type
1140215 Mathematics and Computers in Simulation 2008 9 Pages PDF
Abstract

Using the Lyapunov stability theory an adaptive control is proposed for chaos synchronization between two Chua systems which have stochastically time varying unknown coefficients. The stochastic variations of the coefficients around their unknown mean values are modeled through Gaussian white noise produced by the Wiener process. It is shown that using the proposed adaptive control the mean square of synchronization error converges to an arbitrarily small bound around zero depending on the controller feedback gain. Simulation results indicate that the proposed adaptive controller has a high performance in synchronization of chaotic Chua circuits in noisy environment.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,