Article ID Journal Published Year Pages File Type
1140312 Mathematics and Computers in Simulation 2010 10 Pages PDF
Abstract

The analysis and solution of wave equations with absorbing boundary conditions by using a related first order hyperbolic system has become increasingly popular in recent years. At variance with several methods which rely on this transformation, we propose an alternative method in which such hyperbolic system is not used. The method consists of approximation of spatial derivatives by the Chebyshev pseudospectral collocation method coupled with integration in time by the Runge-Kutta method. Stability limits on the timestep for arbitrary speed are calculated and verified numerically. Furthermore, theoretical properties of two methods by Jackiewicz and Renaut are derived, including, in particular, a result that corrects some conclusions of these authors. Numerical results that verify the theory and illustrate the effectiveness of the proposed approach are reported.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
,