Article ID Journal Published Year Pages File Type
1141012 Mathematics and Computers in Simulation 2009 11 Pages PDF
Abstract

We develop a numerical model for large eddy simulation of turbulent heat transport in the Strait of Gibraltar. The flow equations are the incompressible Navier–Stokes equations including Coriolis forces and density variation through the Boussinesq approximation. The turbulence effects are incorporated in the system by considering the Smagorinsky model. As a numerical solver we propose a finite element semi-Lagrangian method. The solution procedure consists of combining a non-oscillatory semi-Lagrangian scheme for time discretization with the finite element method for space discretization. Numerical results illustrate a buoyancy-driven circulations along the Strait of Gibraltar and the sea-surface temperature is flushed out and move to northeast coast. The Ocean discharge and the temperature difference are shown to control the plume structure.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,