Article ID Journal Published Year Pages File Type
1141645 Discrete Optimization 2011 6 Pages PDF
Abstract

We investigate a special case of the maximum quadratic assignment problem where one matrix is a product matrix and the other matrix is the distance matrix of a one-dimensional point set. We show that this special case, which we call the Wiener maximum quadratic assignment problem, is NP-hard in the ordinary sense and solvable in pseudo-polynomial time.Our approach also yields a polynomial time solution for the following problem from chemical graph theory: find a tree that maximizes the Wiener index among all trees with a prescribed degree sequence. This settles an open problem from the literature.

Related Topics
Physical Sciences and Engineering Mathematics Control and Optimization
Authors
, , , ,