Article ID Journal Published Year Pages File Type
1141905 Discrete Optimization 2007 19 Pages PDF
Abstract

We investigate a scheme, called pairing, for generating new valid inequalities for mixed integer programs by taking pairwise combinations of existing valid inequalities. The pairing scheme essentially produces a split cut corresponding to a specific disjunction, and can also be derived through the mixed integer rounding procedure. The scheme is in general sequence-dependent and therefore leads to an exponential number of inequalities. For some important cases, we identify combination sequences that lead to a manageable set of non-dominated inequalities. We illustrate the framework for some deterministic and stochastic integer programs and we present computational results showing the efficiency of adding the new generated inequalities as cuts.

Related Topics
Physical Sciences and Engineering Mathematics Control and Optimization
Authors
, , ,