Article ID Journal Published Year Pages File Type
1143818 Procedia Manufacturing 2015 8 Pages PDF
Abstract

The steady increasing of supply chain complexity due to a rising global cross-linking of production and sales regions leads to an increasing sensitivity to disturbances while in the meantime the requirements of the availability, the time of delivery and the security of supplies within the supply chain increases. To meet this challenges the security of the supply chain infrastructure and the feasibility of supply chain processes need to be ensured, despite of the high specialization within the supply chain partners, the low stock and time buffers, and the information shortcoming between supply chain partners. In this research, a System Dynamics simulation model, based on the manufacturing supply chain model of Sterman, has been developed for representing the actual complexity and dynamic in manufacturing supply chains. Therefore, the modeled manufacturing supply chain shows the processes of a four level supply chain focusing the processes and interactions of the mid-positioned two supply chain participants. The main contribution of the work described in this paper, is the description and implementation of necessary additional modules and parameters to Sterman's basic model for the diagnosis of disturbance impacts as well as for the realization of supply chain adjustments. Finally, the model has been simulated and examined for realistic values.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering