Article ID Journal Published Year Pages File Type
1144634 Journal of the Korean Statistical Society 2013 9 Pages PDF
Abstract

In this paper, we propose a mixture of beta–Dirichlet processes as a nonparametric prior for the cumulative intensity functions of a Markov process. This family of priors is a natural extension of a mixture of Dirichlet processes or a mixture of beta processes which are devised to compromise advantages of parametric and nonparametric approaches. They give most of their prior mass to the small neighborhood of a specific parametric model. We show that a mixture of beta–Dirichlet processes prior is conjugate with Markov processes. Formulas for computing the posterior distribution are derived. Finally, results of analyzing credit history data are given.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , , ,