Article ID Journal Published Year Pages File Type
1144753 Journal of the Korean Statistical Society 2012 12 Pages PDF
Abstract
We propose a new class of generalized multicast autoregressive (GMCAR, for short, hereafter) models indexed by a multi-casting tree where each individual produces exactly the same number of offspring. This class includes standard bifurcating autoregressive processes (BAR, cf. Cowan and Staudte (1986)) and multicast autoregressive (MCAR, cf. Hwang and Choi (2009)) models as special cases. Accommodating non-Gaussian, non-negative and count data, the class includes various models such as nonlinear autoregression, conditionally heteroscedastic process and conditional exponential family. The pathwise stationarity of the GMCAR model is discussed. A law of large numbers and a central limit theorem are established which are in turn used to derive asymptotic distributions associated with martingale estimating functions.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,