Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1144808 | Journal of the Korean Statistical Society | 2012 | 10 Pages |
Abstract
We will study the least square estimator θÌT,S for the drift parameter θ of the fractional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equation Xt,s=âθâ«0tâ«0sXv,udvdu+Bt,sα,β,(t,s)â[0,T]Ã[0,S]. driven by the fractional Brownian sheet Bα,β with Hurst parameters α,β in (12,58). Using the properties of multiple Wiener-Itô integrals we prove that the estimator is strongly consistent for the parameter θ. In contrast to the one-dimensional case, the estimator θÌT,S is not asymptotically normal.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Jorge Clarke De la Cerda, Ciprian A. Tudor,