Article ID Journal Published Year Pages File Type
1144994 Journal of the Korean Statistical Society 2010 10 Pages PDF
Abstract

A central issue in principal component analysis (PCA) is that of choosing the appropriate number of principal components to be retained. Bishop (1999a) suggested a Bayesian approach for PCA for determining the effective dimensionality automatically on the basis of the probabilistic latent variable model. This paper extends this approach by using mixture priors, in that the choice dimensionality and estimation of principal components are done simultaneously via MCMC algorithm. Also, the proposed method provides a probabilistic measure of uncertainty on PCA, yielding posterior probabilities of all possible cases of principal components.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,