Article ID Journal Published Year Pages File Type
1147532 Journal of Statistical Planning and Inference 2017 15 Pages PDF
Abstract

This paper investigates estimation of parameters in a combination of the multivariate linear model and growth curve model, called a generalized GMANOVA model. Making analogy between the outer product of data vectors and covariance yields an approach to directly do least squares to covariance. An outer product least squares estimator of covariance (COPLS estimator) is obtained and its distribution is presented if a normal assumption is imposed on the error matrix. Based on the COPLS estimator, two-stage generalized least squares estimators of the regression coefficients are derived. In addition, asymptotic normalities of these estimators are investigated. Simulation studies have shown that the COPLS estimator and two-stage GLS estimators are alternative competitors with more efficiency in the sense of sample mean, standard deviations and mean of the variance estimates to the existing ML estimator in finite samples. An example of application is also illustrated.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,