Article ID Journal Published Year Pages File Type
1151180 Statistical Methodology 2012 15 Pages PDF
Abstract

In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Toward this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both analysis- and synthesis-type sparsity priors are considered. Piecing together the data fidelity and the prior terms, the deconvolution problem boils down to the minimization of non-smooth convex functionals (for each prior). We establish the well-posedness of each optimization problem, characterize the corresponding minimizers, and solve them by means of proximal splitting algorithms originating from the realm of non-smooth convex optimization theory. Experimental results are conducted to demonstrate the potential applicability of the proposed algorithms to astronomical imaging datasets.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,