Article ID Journal Published Year Pages File Type
1151213 Statistical Methodology 2006 14 Pages PDF
Abstract

This is a comparative study of various clustering and classification algorithms as applied to differentiate cancer and non-cancer protein samples using mass spectrometry data. Our study demonstrates the usefulness of a feature selection step prior to applying a machine learning tool. A natural and common choice of a feature selection tool is the collection of marginal pp-values obtained from tt-tests for testing the intensity differences at each m/zm/z ratio in the cancer versus non-cancer samples. We study the effect of selecting a cutoff in terms of the overall Type 1 error rate control on the performance of the clustering and classification algorithms using the significant features. For the classification problem, we also considered m/zm/z selection using the importance measures computed by the Random Forest algorithm of Breiman. Using a data set of proteomic analysis of serum from ovarian cancer patients and serum from cancer-free individuals in the Food and Drug Administration and National Cancer Institute Clinical Proteomics Database, we undertake a comparative study of the net effect of the machine learning algorithm–feature selection tool–cutoff criteria combination on the performance as measured by an appropriate error rate measure.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,