Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1151930 | Statistical Methodology | 2010 | 14 Pages |
Abstract
Block and Basu bivariate exponential distribution is one of the most popular absolutely continuous bivariate distributions. Extensive work has been done on the Block and Basu bivariate exponential model over the past several decades. Interestingly it is observed that the Block and Basu bivariate exponential model can be extended to the Weibull model also. We call this new model as the Block and Basu bivariate Weibull model. We consider different properties of the Block and Basu bivariate Weibull model. The Block and Basu bivariate Weibull model has four unknown parameters and the maximum likelihood estimators cannot be obtained in closed form. To compute the maximum likelihood estimators directly, one needs to solve a four dimensional optimization problem. We propose to use the EM algorithm for computing the maximum likelihood estimators of the unknown parameters. The proposed EM algorithm can be carried out by solving one non-linear equation at each EM step. Our method can be also used to compute the maximum likelihood estimators for the Block and Basu bivariate exponential model. One data analysis has been preformed for illustrative purpose.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Debasis Kundu, Rameshwar D. Gupta,