Article ID Journal Published Year Pages File Type
1152219 Statistics & Probability Letters 2012 9 Pages PDF
Abstract
In Kholfi and Mahmoud (2011) the class of tenable irreducible nondegenerate zero-balanced Pólya urn schemes is introduced and its asymptotic behavior in various phases is studied. In the absence of an initially dominant subset of colors, the counts of balls of all the colors satisfy multivariate central limit theorems. It is reported there that the case of an initially dominant subset of colors poses challenges requiring finer asymptotic analysis. In the present investigation we follow up on this. Indeed, we characterize noncritical cases with an initially dominant subset of colors in which not all ball counts satisfy one multivariate central limit theorem, but rather a subset of the ball counts satisfies a singular multivariate central limit theorem. The rest of the cases are critical, in which all the ball counts satisfy a multivariate central limit theorem, but under a different scaling. However, for these critical cases the Gaussian phases are delayed considerably.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,