Article ID Journal Published Year Pages File Type
1152329 Statistics & Probability Letters 2011 12 Pages PDF
Abstract

We consider time-changed Poisson processes, and derive the governing difference–differential equations (DDEs) for these processes. In particular, we consider the time-changed Poisson processes where the time-change is inverse Gaussian, or its hitting time process, and discuss the governing DDEs. The stable subordinator, inverse stable subordinator and their iterated versions are also considered as time-changes. DDEs corresponding to probability mass functions of these time-changed processes are obtained. Finally, we obtain a new governing partial differential equation for the tempered stable subordinator of index 0<β<10<β<1, when ββ is a rational number. We then use this result to obtain the governing DDE for the mass function of the Poisson process time-changed by the tempered stable subordinator. Our results extend and complement the results in Baeumer et al. (2009) and Beghin and Orsingher (2009) in several directions.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,