Article ID Journal Published Year Pages File Type
1152385 Statistics & Probability Letters 2012 9 Pages PDF
Abstract

We describe a simple, yet efficient, procedure for approximating the Lévy measure of a Gamma(α,1)Gamma(α,1) random variable. We use this approximation to derive a finite sum-representation that converges almost surely to Ferguson’s representation of the Dirichlet process. This approximation is written based on arrivals of a homogeneous Poisson process. We compare the efficiency of our approximation to several other well-known approximations of the Dirichlet process and demonstrate a significant improvement.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,