Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1152537 | Statistics & Probability Letters | 2011 | 9 Pages |
Our aim in this paper, is first constructing a Lyapunov function to prove the global stability of the unique smoking-present equilibrium state of a mathematical model of smoking. Next we incorporate random noise into the deterministic model. We show that the stochastic model established in this paper possesses non-negative solutions as this is essential in any population dynamics model. Then a stochastic Lyapunov method is performed to obtain the sufficient conditions for mean square and asymptotic stability in probability of the stochastic model. Our analysis reveals that the stochastic stability of the smoking-present equilibrium state, depends on the magnitude of the intensities of noise as well as the parameters involved within the model system.