Article ID Journal Published Year Pages File Type
1152572 Statistics & Probability Letters 2011 10 Pages PDF
Abstract
We present a very fast algorithm for general matrix factorization of a data matrix for use in the statistical analysis of high-dimensional data via latent factors. Such data are prevalent across many application areas and generate an ever-increasing demand for methods of dimension reduction in order to undertake the statistical analysis of interest. Our algorithm uses a gradient-based approach which can be used with an arbitrary loss function provided the latter is differentiable. The speed and effectiveness of our algorithm for dimension reduction is demonstrated in the context of supervised classification of some real high-dimensional data sets from the bioinformatics literature.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , , , ,