Article ID Journal Published Year Pages File Type
1152607 Statistics & Probability Letters 2011 6 Pages PDF
Abstract

We consider repeated measures interval-observed data with informative dropouts. We model the repeated outcomes via an unobserved random intercept and it is assumed that the probability of dropout during the study period is linearly related to the random intercept in a complementary log–log scale. Assuming the random effect follows the power variance function (PVF) family suggested by Hougaard (2000), we derive the marginal likelihood in a closed form. We evaluate the performance of the maximum likelihood estimation via simulation studies and apply the proposed method to a real data set.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,