| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1153144 | Statistics & Probability Letters | 2010 | 9 Pages | 
Abstract
												We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variables—that is, under true implementation of the methodology. Under this setting we show that the forest ensemble survival function converges uniformly to the true population survival function. To prove this result we make one key assumption regarding the feature space: we assume that all variables are factors. Doing so ensures that the feature space has finite cardinality and enables us to exploit counting process theory and the uniform consistency of the Kaplan–Meier survival function.
Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Statistics and Probability
												
											Authors
												Hemant Ishwaran, Udaya B. Kogalur, 
											