Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1153576 | Statistics & Probability Letters | 2011 | 5 Pages |
Abstract
Two preferential attachment-type graph models which allow for dynamic addition/deletion of edges/vertices are considered. The focus of this paper is on the limiting expected degree of a fixed vertex. For both models a phase transition is seen to occur, i.e. if the probability with which edges are deleted is below a model-specific threshold value, the limiting expected degree is infinite, but if the probability is higher than the threshold value, the limiting expected degree is finite. In the regime above the critical threshold probability, however, the behaviour of the two models may differ. For one of the models a non-zero (as well as zero) limiting expected degree can be obtained whilst the other only has a zero limit. Furthermore, this phase transition is seen to occur for the same critical threshold probability of removing edges as the one which determines whether the degree sequence is of power-law type or if the tails decays exponentially fast.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Mathias Lindholm, Thomas Vallier,