Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1154115 | Statistics & Probability Letters | 2008 | 9 Pages |
Abstract
Weak convergence of finite Borel measures in a completely regular topological space X is defined by means of the class of bounded and continuous functions f:XâR. We give conditions equivalent to weak convergence of finite measures in terms of some classes of unbounded, continuous and semicontinuous real-valued functions on X. For this purpose we introduce the notion of almost uniformly integrable mappings with respect to a directed family of measures. The obtained results may be treated as an extension of the Alexandroff theorem, also known as portmanteau theorem.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
August MichaÅ ZapaÅa,