Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1154585 | Statistics & Probability Letters | 2008 | 8 Pages |
Abstract
Sequential Monte Carlo (SMC) samplers [Del Moral, P., Doucet, A., Jasra, A., 2006. Sequential Monte Carlo samplers. J. Roy. Statist. Soc. B 68, 411-436] are designed to simulate from a sequence of probability measures on a common measurable space (E,E). One way to measure the accuracy of the resulting Monte Carlo estimates is the asymptotic variance in the central limit theorem (CLT). We investigate the conditions, for algorithms used in practice, which are sufficient to ensure that the resulting expression is upper bounded, of which, the typical conditions (e.g. [Chopin, N., 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32, 2385-2411]) are quite restrictive. We use the Foster-Lyapunov condition and contractions in the f-norm of the Markov kernels [Douc, R., Moulines, E., Rosenthal, J.S., 2004. Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14, 1643-1665] to establish quantitative bounds on the asymptotic variance.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Ajay Jasra, Arnaud Doucet,