Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1155438 | Stochastic Processes and their Applications | 2016 | 32 Pages |
Abstract
We show the existence of Lévy-type stochastic processes in one space dimension with characteristic triplets that are either discontinuous at thresholds, or are stable-like with stability index functions for which the closures of the discontinuity sets are countable. For this purpose, we formulate the problem in terms of a Skorokhod-space martingale problem associated with non-local operators with discontinuous coefficients. These operators are approximated along a sequence of smooth non-local operators giving rise to Feller processes with uniformly controlled symbols. They converge uniformly outside of increasingly smaller neighborhoods of a Lebesgue null set on which the singularities of the limit operator are located.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Peter Imkeller, Niklas Willrich,