Article ID Journal Published Year Pages File Type
1155612 Stochastic Processes and their Applications 2013 15 Pages PDF
Abstract
We study a model of species survival recently proposed by Michael and Volkov. We interpret it as a variant of empirical processes, in which the sample size is random and when decreasing, samples of smallest numerical values are removed. Micheal and Volkov proved that the empirical distributions converge to the sample distribution conditioned not to be below a certain threshold. We prove a functional central limit theorem for the fluctuations. There exists a threshold above which the limit process is Gaussian with variance bounded below by a positive constant, while at the threshold it is half-Gaussian.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,