Article ID Journal Published Year Pages File Type
1155613 Stochastic Processes and their Applications 2013 33 Pages PDF
Abstract
Let (Ut,Vt) be a bivariate Lévy process, where Vt is a subordinator and Ut is a Lévy process formed by randomly weighting each jump of Vt by an independent random variable Xt having cdf F. We investigate the asymptotic distribution of the self-normalized Lévy process Ut/Vt at 0 and at ∞. We show that all subsequential limits of this ratio at 0 (∞) are continuous for any nondegenerate F with finite expectation if and only if Vt belongs to the centered Feller class at 0 (∞). We also characterize when Ut/Vt has a non-degenerate limit distribution at 0 and ∞.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,