Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1155768 | Stochastic Processes and their Applications | 2012 | 34 Pages |
This article studies quadratic semimartingale BSDEs arising in power utility maximization when the market price of risk is of BMO type. In a Brownian setting we provide a necessary and sufficient condition for the existence of a solution but show that uniqueness fails to hold in the sense that there exists a continuum of distinct square-integrable solutions. This feature occurs since, contrary to the classical Itô representation theorem, a representation of random variables in terms of stochastic exponentials is not unique. We study in detail when the BSDE has a bounded solution and derive a new dynamic exponential moments condition which is shown to be the minimal sufficient condition in a general filtration. The main results are complemented by several interesting examples which illustrate their sharpness as well as important properties of the utility maximization BSDE.