Article ID Journal Published Year Pages File Type
1155994 Stochastic Processes and their Applications 2009 20 Pages PDF
Abstract

We obtain rates of strong approximation of the empirical process indexed by functions by a Brownian bridge under only random entropy conditions. The results of Berthet and Mason [P. Berthet, D.M. Mason, Revisiting two strong approximation results of Dudley and Philipp, in: High Dimensional Probability, in: IMS Lecture Notes-Monograph Series, vol. 51, 2006, pp. 155–172] under bracketing entropy are extended by combining their method to properties of the empirical entropy. Our results show that one can improve the universal rate vn=o(loglogn) from Dudley and Philipp [R.M. Dudley, W. Philipp, Invariance principles for sums of Banach space valued random elements and empirical processes, Z. Wahrsch. Verw. Gebiete 62 (1983) 509–552] into vn→0vn→0 at a logarithmic rate, under a weak random entropy assumption which is close to necessary. As an application the results of Koltchinskii [V.I. Kolchinskii, Komlós–Major–Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab. 7 (1994) 73–118] are revisited when the conditions coming in addition to random entropy are relaxed.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,