Article ID Journal Published Year Pages File Type
1156108 Stochastic Processes and their Applications 2009 33 Pages PDF
Abstract

We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space–time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semigroup. We obtain existence and uniqueness of a solution for nonnegative initial conditions, results on the invariant measures, and on the reflection measures.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,