Article ID Journal Published Year Pages File Type
1156304 Stochastic Processes and their Applications 2009 24 Pages PDF
Abstract

We construct the Laplace approximation of the Lebesgue density for a discrete partial observation of a multi-dimensional stochastic differential equation. This approximation may be computed integrating systems of ordinary differential equations. The construction of the Laplace approximation begins with the definition of the point of minimum energy. We show how such a point can be defined in the Cameron–Martin space as a maximum a posteriori estimate of the underlying Brownian motion given the observation of a finite-dimensional functional. The definition of the MAP estimator is possible via a renormalization of the densities of piecewise linear approximations of the Brownian motion. Using the renormalized Brownian density the Laplace approximation of the integral over all Brownian paths can be defined. The developed theory provides a method for performing approximate maximum likelihood estimation.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,