Article ID Journal Published Year Pages File Type
1156320 Stochastic Processes and their Applications 2008 21 Pages PDF
Abstract

We consider a system of diffusing particles on the real line in a quadratic external potential and with a logarithmic interaction potential. The empirical measure process is known to converge weakly to a deterministic measure-valued process as the number of particles tends to infinity. Provided the initial fluctuations are small, the rescaled linear statistics of the empirical measure process converge in distribution to a Gaussian limit for sufficiently smooth test functions. For a large class of analytic test functions, we derive explicit general formulae for the mean and covariance in this central limit theorem by analyzing a partial differential equation characterizing the limiting fluctuations.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,