Article ID Journal Published Year Pages File Type
1156387 Stochastic Processes and their Applications 2008 22 Pages PDF
Abstract

We extend the notion of positive continuous additive functionals of multidimensional Brownian motions to generalized Wiener functionals in the setting of Malliavin calculus. We call such a functional a generalized PCAF. The associated Revuz measure and a characteristic of a generalized PCAF are also extended adequately. By making use of these tools a local time representation of generalized PCAFs is discussed. It is known that a Radon measure corresponds to a generalized Wiener functional through the occupation time formula. We also study a condition for this functional to be a generalized PCAF and the relation between the associated Revuz measure of the generalized PCAF corresponding to Radon measure and this Radon measure. Finally we discuss a criterion to determine the exact Meyer–Watanabe’s Sobolev space to which this corresponding functional belongs.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,