Article ID Journal Published Year Pages File Type
1156529 Stochastic Processes and their Applications 2014 28 Pages PDF
Abstract

In this article we introduce cylindrical fractional Brownian motions in Banach spaces and develop the related stochastic integration theory. Here a cylindrical fractional Brownian motion is understood in the classical framework of cylindrical random variables and cylindrical measures. The developed stochastic integral for deterministic operator valued integrands is based on a series representation of the cylindrical fractional Brownian motion, which is analogous to the Karhunen–Loève expansion for genuine stochastic processes. In the last part we apply our results to study the abstract stochastic Cauchy problem in a Banach space driven by cylindrical fractional Brownian motion.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,