Article ID Journal Published Year Pages File Type
1156867 Stochastic Processes and their Applications 2010 27 Pages PDF
Abstract

We consider the linear stochastic wave equation with spatially homogeneous Gaussian noise, which is fractional in time with index H>1/2H>1/2. We show that the necessary and sufficient condition for the existence of the solution is a relaxation of the condition obtained in Dalang (1999) [10], where the noise is white in time. Under this condition, we show that the solution is L2(Ω)L2(Ω)-continuous. Similar results are obtained for the heat equation. Unlike in the white noise case, the necessary and sufficient condition for the existence of the solution in the case of the heat equation is different (and more general) than the one obtained for the wave equation.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,