Article ID Journal Published Year Pages File Type
1156927 Stochastic Processes and their Applications 2010 29 Pages PDF
Abstract

We explain how Itô’s excursion theory can be used to understand the asymptotic behavior of large random trees. We provide precise statements showing that the rescaled contour of a large Galton–Watson tree is asymptotically distributed according to Itô’s excursion measure. As an application, we provide a simple derivation of Aldous’ theorem stating that the rescaled contour function of a Galton–Watson tree conditioned to have a fixed large progeny converges to a normalized Brownian excursion. We also establish a similar result for a Galton–Watson tree conditioned to have a fixed large height.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,