Article ID Journal Published Year Pages File Type
1161574 Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 2009 11 Pages PDF
Abstract

The central question of this paper is: are deterministic and indeterministic descriptions observationally equivalent in the sense that they give the same predictions? I tackle this question for measure-theoretic deterministic systems and stochastic processes, both of which are ubiquitous in science. I first show that for many measure-theoretic deterministic systems there is a stochastic process which is observationally equivalent to the deterministic system. Conversely, I show that for all stochastic processes there is a measure-theoretic deterministic system which is observationally equivalent to the stochastic process. Still, one might guess that the measure-theoretic deterministic systems which are observationally equivalent to stochastic processes used in science do not include any deterministic systems used in science. I argue that this is not so because deterministic systems used in science even give rise to Bernoulli processes. Despite this, one might guess that measure-theoretic deterministic systems used in science cannot give the same predictions at every observation level as stochastic processes used in science. By proving results in ergodic theory, I show that also this guess is misguided: there are several deterministic systems used in science which give the same predictions at every observation level as Markov processes. All these results show that measure-theoretic deterministic systems and stochastic processes are observationally equivalent more often than one might perhaps expect. Furthermore, I criticize the claims of some previous philosophy papers on observational equivalence.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
,