Article ID Journal Published Year Pages File Type
1173376 Analytical Biochemistry 2015 4 Pages PDF
Abstract

With the advent of synthetic biology and cell engineering, the demand for large synthetic DNA fragments has been steadily increasing. Consequently, a number of multi-fragment cloning technologies optimized for the assembly of sizable DNA constructs have been developed. Still, screening for the right clone can be tedious because the high incidence of illegitimate assembly results in a relatively large proportion of missing or shuffled DNA elements. To mitigate this risk, we have developed a strategy that reduces the rate of fragment mis-assembly and is compatible with a variety of cloning methodologies. The approach is based on the positive selection of truncated plasmid markers, which are rendered active by providing their missing sequences during the assembly process. The method has been successfully validated in the context of complex in vivo and in vitro homologous recombination workflows, but it could be readily adapted to other cloning strategies, including those based on restriction endonucleases.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,